PRODUCT APPROVAL SUPPORTING CALCULATIONS

Auraline Composite Fixed with Track Filler Mullion (CHS) 3-Wide

REPORT TO:

JELD-WEN WINDOWS & DOORS 3737 LAKEPORT BLVD KLAMATH FALLS, OREGON

REPORT NUMBER: NCTL-110-23617-1 REPORT DATE: 08/27/20

Joseph A. Reed, PE FL PE 58920 FL REG 33474

Scope

National Certified Testing Laboratories was contracted by Jeld-Wen Windows & Doors to evaluate alternate installation methods for their *Auraline* Composite Fixed with Track Filler Mullion (CHS) 3-Wide windows. The evaluation is based on physical testing and product certifications. Reference standards utilized in this project include:

Florida Building Code, Building. International Code Council.

ANSI/AWC *National Design Specification (NDS) for Wood Construction*. American Wood Council.

AISI S100 North American Specification for the Design of Cold-Formed Steel Structural Members. American Iron and Steel Institute.

ICC-ES Report ESR-1976 *ITW Buildex TEKS Self-Drilling Fasteners*. ICC Evaluation Service.

NOA 16-1222.06 Tapcon Concrete and Masonry Anchors with Advanced Threadform Technology. Miami-Dade County Product Control Section.

The anchorage analyses presented herein do not address the water resistance, water penetration or air infiltration performance of the installation method or the installed product. In addition, the analyses rely on the assumption that the building substrate is capable of withstanding incurred loads.

Certification of Independence

In accordance with Rule 61G20-3 Florida Administrative Code, National Certified Testing Laboratories hereby certifies the following:

- National Certified Testing Laboratories does not have, nor does it intend to acquire
 or will it acquire, a financial interest in any company manufacturing or distributing
 products tested or labeled by the agency.
- National Certified Testing Laboratories is not owned, operated or controlled by any company manufacturing or distributing products it tests or labels.
- Joseph A. Reed, P.E. does not have nor will acquire, a financial interest in any company manufacturing or distributing products for which the reports are being issued.
- Joseph A. Reed, P.E does not have, nor will acquire, a financial interest in any other entity involved in the approval process of the product.

Analyses

Summary of Test Results

The following table summarizes the various *Auraline* Composite Fixed with Track Filler Mullion (CHS) 3-Wide window products and their corresponding performance levels which have been established by testing or product certification.

Table 1 Summary of Test Results

Series/Model	Test Report Number	Size (W x H)	Performance
Auraline Composite Fixed with Track Filler Mullion (CHS) 3-Wide (Fin Install and Strap Anchor Install)	L0420.01-301-47 (Rev. 1, 08/20/20)	144" x 72"	+35/-40 psf

Testing documented in Table 1 was conducted by the Intertek laboratory in Fresno, California (Florida Department of Business & Professional Regulation Test Lab No. TST26096, IAS Laboratory Accreditation TL-264).

As-Tested Installation Analysis

For air/water/structural testing the test specimen was secured to a 2x Spruce-Pine-Fir buck. The as-tested installation methods are evaluated on page 3 to page 6. These capacities will be used to prove acceptable alternate anchors and substrates for the windows.

Alternate Anchorages

Calculations on page 7 through page 22 determine the design capacity of alternate installation anchorages for the window.

Anchorage Requirements

As-tested spacing must be maintained. It must be determined the anchorages are not overloaded for the approved window size and design pressures. Calculations presented on page 23 show the anchor spacing requirements for the established limiting anchor capacities.

Anchorage requirements established by this report are accurately presented in Drawing D015732-1.

Attachments

Appendix A – Revision Log (1 page)

<u>As-Tested Installation – Nail Fin to Wood</u>

#8 x 1-1/4" Pan Head Screw

0.062" thick Nail Fin

Spruce-Pine-Fir 2x Wood Substrate Minimum (G=0.42)

Allowable Tension of #8 x 1-1/4" Pan Head Screw

W = 1.6(1.250"-0.062")(82 lb/in) (NDS, Table 11.2B)

W = 156 lb

Allowable Pull-Over of #8 x 1-1/4" Pan Head Screw

Validated by Testing Must maintain anchor spacing and anchor head size

As-tested spacing: 8" on center

As-tested anchor head size: 0.314"

Capacity of Connection is 156 lb

As-Tested Installation - Strap Anchor to Wood

Two #8 x 1-1/2" Pan Head Screws securing strap to substrate

Spruce-Pine-Fir 2x Wood Substrate Minimum (G=0.42)

Two #8 Screws securing strap to window frame

0.125" thick Window Frame

20 gauge (0.033" thick) 33 KSI Steel Strap Anchor

1/4" Maximum Shim Space

Allowable Shear of #8 x 1-1/2" Pan Head Screw

Z' = 122 lb (See Following 2 Pages)

Bending of #8 x 1-1/2" Pan Head Screw

L = 1/4" (maximum shim space)

 $S = \pi d^3/32 = \pi (0.131)^3/32 = 0.000221 \text{ in}^3$

 $F_b = (1.3)(0.6F_v) = (1.3)(0.6)(90,000 \text{ psi}) = 70,200 \text{ psi} (1.3 \text{ weak axis factor})$

 $F_b = M/S = (VL/2)/S (L/2 \text{ for guided bending})$

 $V = 2SF_b/L = (2)(0.000221 \text{ in})(70,200 \text{ psi})/0.25" = 124 \text{ lb.}$

Bearing of #8 Screw on Frame

 $F_p = 10,000 \text{ psi}$

D = 0.164"

t = 0.125"

 $V_a = F_pDt = (10,000 \text{ psi})(0.164")(0.125") = 205 \text{ lb}$

Bearing of #8 Screw on Strap Anchor

 $V_a = 2.7 Dt F_{tu}/3.0$

 $V_a = 2.7(0.164")(0.033")(45,000 psi)/3.0$

 $V_a = 219 \text{ lb.}$

Capacity of Connection is 122 lb

Capacity for Two Screws is 244 lb

Qualifies 8d (0.131" diameter) Nail

Fastener

As-Tested Installation - Strap Anchor to Wood (Continued)

Lateral Design Strength of Wood Connections

Data

Fastener	=	#8 W	ood Screw		
Shank Dia	=	0.164	in.		
Root Dia.	=	0.131	in.		
F_{yb}	=	90,000	psi		
Fastener length	=	2.500	in.		
Main Member					
Material	=		SPF		
G	=	0.42			
θ	=	90	$<=$ (Angle of load to grain $0^{\circ} < \theta < 90^{\circ}$)		
F_{e}	=	3,350	psi		
Thickness	=	1.500	in.		

Side Member

Material	=	ASTM A 653, Grade 33 Steel				
G	=	N/A				
θ	=	90	$<=$ (Angle of load to grain $0^{\circ} < \theta < 90^{\circ}$)			
F_{es}	=	61,850	psi			
Thickness	=	0.033	in.			

Calculations

Lateral Bearing Factors

D	=	0.131	in.
$\ell_{\rm m}$	=	1.500	in.
$K_{\boldsymbol{\theta}}$	=	1.25	
K_D	=	2.20	
R_{e}	=	0.054	
R_{t}	=	45.45	
\mathbf{k}_1	=	1.0041	
k_2	=	0.5032	
k_3	=	23.87	

Yield Mode	R_d
$I_{\rm m}$, $I_{\rm s}$	2.20
II	2.20
III _m , III _s , IV	2.20

As-Tested Installation – Strap Anchor to Wood (Continued)

Lateral Des	ign Valu	ies, Z		
$Mode\ I_m$	=	299	lbf	
Mode I _s	=	122	lbf	
Mode II	=	122	lbf	
Mode III _m	=	136	lbf	
Mode III _s	=	77	lbf	<===== Minimum Value
Mode IV	=	108	lbf	
C_D	=	1.6		
V	Vet Serv	ice Factor		
Fabrication/In-	Service	Dry/Dry		
C_{M}	=	1.0		
In service temp	erature	T:	≤100°F	
C_{t}	=	1.0		
C_g	=	1.0		
C_{Δ}	=	1.0		
Is fastener installed in end	grain?	No		
C_{eg}	=	1.00		
Is fastener part of a diap		No		
C_{di}	=	1.0		
Is fastener toe-	nailed?	No		
C_{tn}	=	1.00		
Z'	=	<u>122</u>	lbf	

<u>Alternate Installation - Through Frame to Wood</u>

#8 Pan Head Screw; 1-1/2" penetration to wood

0.062" thick Window Frame

1/4" Maximum Shim Space

Spruce-Pine-Fir 2x Wood Substrate Minimum (G=0.42)

Allowable Shear of #8 Pan Head Screw

Z' = 113 lb (See Following 2 Pages)

Bending of #8 Pan Head Screw

L = 1/4" (maximum shim space)

 $S = \pi d^3/32 = \pi (0.131)^3/32 = 0.000221 in^3$

 $F_b = (1.3)(0.6F_y) = (1.3)(0.6)(90,000 \text{ psi}) = 70,200 \text{ psi} (1.3 \text{ weak axis factor})$

 $F_b = M/S = (VL/2)/S (L/2 \text{ for guided bending})$

 $V = 2SF_b/L = (2)(0.000221 in)(70,200 psi)/0.25" = 124 lb.$

Capacity of Connection is 113 lb

<u>Alternate Installation – Through Frame to Wood</u> (Continued)

Lateral Design Strength of Wood Connections

Data

=	#8 W	ood Screw
=	0.164	in.
=	0.131	in.
=	90,000	psi
=	2.500	in.
	= = = =	= 0.164 = 0.131 = 90,000

Main Member

Material	=		SPF	
G	=	0.42		
θ	=	90	<= (Angle of loa	d to grain $0^{\circ} \le \theta \le 90^{\circ}$)
F_{e}	=	3,350	psi	
Thickness	=	1.500	in.	

Side Member

Material	=	Vin	yl (PVC)	
G	=	N/A		
θ	=	90	<= (Angle of load	I to grain $0^{\circ} \le \theta \le 90^{\circ}$)
F_{es}	=	13,750	psi	
Thickness	=	0.125	in.	

Calculations

Lateral Bearing Factors

D	=	0.131	in
$\ell_{\rm m}$	=	1.500	in
$K_{\boldsymbol{\theta}}$	=	1.25	
K_D	=	2.20	
R_{e}	=	0.244	
R_{t}	=	12.00	
\mathbf{k}_1	=	1.1349	
k_2	=	0.6403	
k_2	=	6.37	

Yield Mode	R_d
$I_{\rm m}$, $I_{\rm s}$	2.20
II	2.20
III _m , III _s , IV	2.20

<u>Alternate Installation – Through Frame to Wood</u> (Continued)

Lateral Des	ign Valu	ies, Z		
$Mode I_m$	=	299	lbf	
Mode I _s	=	102	lbf	
Mode II	=	116	lbf	
$Mode\ III_{m}$	=	129	lbf	
Mode III _s	=	71	lbf	<===== Minimum Value
Mode IV	=	99	lbf	
$C_{\mathtt{D}}$	=	1.6		
V	Vet Serv	ice Factor		
Fabrication/In-	Service	Dry/Dry		
C_{M}	=	1.0		
In service temp	erature	T:	≤100°F	
C_{t}	=	1.0		
C_g	=	1.0		
C_{Δ}	=	1.0		
Is fastener installed in end	l grain?	No		
C_{eg}	=	1.00		
Is fastener part of a diap	hragm?	No		
C_{di}	=	1.0		
Is fastener toe-	-nailed?	No		
C_{tn}	=	1.00		
Z '	=	<u>113</u>	lbf	

<u> Alternate Installation – Nail Fin to Steel Stud</u>

#10-16 TEKS Screw

Minimum 18 gauge 33 KSI Steel Stud

Allowable Tension of #10-16 TEKS Screw

 P_{ss}/Ω 885 lb (ESR-1976)

Pull-Out of #10-16 TEKS Screw

 $P_{not} = 0.85t_c dF_{u2}/\Omega$

 $P_{\text{not}} = 0.85(0.0428")(0.190")(45,000 \text{ psi})/3.0$

 $P_{not} = 104 \text{ lb}$

Pull-Over of #10-16 TEKS Screw

Head Diameter = 0.400" > 0.314" (as tested) **OK**

Capacity of Connection is 104 lb

<u> Alternate Installation – Nail Fin to Wood with Nail</u>

6d Nail (2" x 0.113" dia.)

0.062" thick Nail Fin

Spruce-Pine-Fir 2x Wood Substrate Minimum (G=0.42)

Allowable Tension of 6d Nail

W = 1.6(2.00"-0.062")(18 lb/in) (NDS, Table 11.2C) W = 56 lb

Capacity of Connection is 56 lb

Alternate Installation - Trough Frame to Steel Stud

#10-16 TEKS Screw

1/4" Maximum Shim Space

Minimum 18 gauge 33 KSI Steel Stud

Allowable Shear of #10-16 TEKS Screw

 $P_{ss}/\Omega = 573 \text{ lb (ESR-1976)}$

Bearing of #10-16 TEKS Screw on Frame

 $F_p = 10,000 \text{ psi}$ D = 0.190" t = 0.125" $V_a = F_pDt = (10,000 \text{ psi})(0.190)(0.125) = 238 \text{ lb}$

Bearing of #10-16 TEKS Screw on Steel Stud

 $V_a = 2.7 DtF_{tu}/3.0$ $V_a = 2.7(0.190")(0.0428")(45,000 psi)/3.0$ $V_a = 329 lb.$

Tilting of #10-16 TEKS Screw in Steel Stud

 $V_a = 4.2(t_2^3D)^{1/2}F_{tu2}/n_s$ $V_a = 4.2(0.0428"^3 \times 0.190")^{1/2}(45,000 \text{ psi})/3.0$ $V_a = 243 \text{ lb}.$

Bending of #10-16 TEKS Screw

 $L = 1/4" \text{ (Maximum Shim Space)} \\ S = \pi d^3/32 = \pi (0.135)^3/32 = 0.000242 \text{ in}^3 \\ F_b = (1.3)(0.6F_y) = (1.3)(0.6)(92,000 \text{ psi}) = 71,760 \text{ psi} (1.3 \text{ weak axis factor}) \\ F_b = M/S = (VL/2)/S \text{ (L/2 for guided bending)} \\ V = 2SF_b/L = (2)(0.000242 \text{ in}^3)(71,760 \text{ psi})/0.25" = 139 \text{ lb.} \\ \end{split}$

Capacity of Connection is 139 lb.

Alternate Installation - Through Frame to Concrete

3/16" Tapcon Anchor

2-1/2" Minimum Edge Distance, 1-1/4" Minimum Embedment

1/4" Maximum Shim Space

Minimum f'c = 3,000 psi Concrete

Allowable Shear of 3/16" Tapcon Anchor

 $P_{ss}/\Omega = 181 \text{ lb}$ (NOA-No. 16-1222.06)

Bearing of 3/16" Tapcon Anchor on Frame

 F_p = 10,000 psi D = 0.170" t = 0.125" $V_a = F_p Dt = (10,000 \text{ psi})(0.170")(0.125") = 213 \text{ lb}$

Bending of 3/16" Tapcon Anchor

 $L = 1/4" \text{ (Maximum Shim Space)} \\ S = \pi d^3/32 = \pi (0.170")^3/32 = 0.000482 \text{ in}^3 \\ F_b = (1.3)(0.6F_y) = (1.3)(0.6)(137,000 \text{ psi}) = 106,860 \text{ psi} (1.3 \text{ weak axis factor}) \\ F_b = M/S = (VL/2)/S \text{ (L/2 for guided bending)} \\ V = 2SF_b/L = (2)(0.000482 \text{ in}^3)(106,860 \text{ psi})/0.25" = 412 \text{ lb.} \\$

Capacity of Connection is 181 lb

<u>Alternate Installation – Through Frame to CMU</u>

3/16" Tapcon Anchor

2-1/2" Minimum Edge Distance, 1-1/4" Minimum Embedment

1/4" Maximum Shim Space

Minimum ASTM C90 Concrete Masonry Unit

Allowable Shear of 3/16" Tapcon Anchor

 $P_{ss}/\Omega = 135 \text{ lb}$ (NOA-No. 16-1222.06)

Bearing of 3/16" Tapcon Anchor on Frame

 $F_p = 10,000 \text{ psi}$ D = 0.170" t = 0.125" $V_a = F_pDt = (10,000 \text{ psi})(0.170)(0.125) = 213 \text{ lb}$

Bending of 3/16" Tapcon Anchor

 $L = 1/4" \text{ (Maximum Shim Space)} \\ S = \pi d^3/32 = \pi (0.170")^3/32 = 0.000482 \text{ in}^3 \\ F_b = (1.3)(0.6F_y) = (1.3)(0.6)(137,000 \text{ psi}) = 106,860 \text{ psi} (1.3 \text{ for weak axis bending)} \\ F_b = M/S = (VL/2)/S \text{ (L/2 for guided bending)} \\ V = 2SF_b/L = (2)(0.000482 \text{ in}^3)(106,860 \text{ psi})/0.25" = 412 \text{ lb.} \\ \end{split}$

Capacity of Connection is 135 lb

Alternate Installation - Strap Anchor to Wood with Nail

Two 6d nails (2" x 0.113" dia.) securing strap to substrate

Spruce-Pine-Fir 2x Wood Substrate Minimum (G=0.42)

Two #8 Screws securing strap to window frame

0.125" thick Window Frame

20 gauge (0.033" thick) 33 KSI Steel Strap Anchor

1/4" Maximum Shim Space

Allowable Shear of 6d Nail

Z' = 96 lb (See Following 2 Pages)

Bending of 6d Nail

L = 1/4" (maximum shim space)

 $S = \pi d^3/32 = \pi (0.113)^3/32 = 0.000142 \text{ in}^3$

 $F_b = (1.3)(0.6F_y) = (1.3)(0.6)(100,000 \text{ psi}) = 78,000 \text{ psi} (1.3 \text{ weak axis factor})$

 $F_b = M/S = (VL/2)/S (L/2 \text{ for guided bending})$

 $V = 2SF_b/L = (2)(0.000142 \text{ in})(78,000 \text{ psi})/0.25" = 88 \text{ lb.}$

Bearing of #8 Screw on Frame

 $F_p = 10,000 \text{ psi}$

D = 0.164"

t = 0.125"

 $V_a = F_pDt = (10,000 \text{ psi})(0.164")(0.125") = 205 \text{ lb}$

Bearing of #8 Screw on Strap Anchor

 $V_a = 2.7 Dt F_{tu}/3.0$

 $V_a = 2.7(0.164")(0.033")(45,000 psi)/3.0$

 $V_a = 219 \text{ lb.}$

Capacity of Connection is 88 lb

Capacity for Two Nails is 176 lb

<u>Alternate Installation – Strap Anchor to Wood with Nail</u> (Continued)

Lateral Design Strength of Wood Connections

Data

Fastener			
Fastener	=	6d Co	mmon nail
Shank Dia	=	0.113	in.
Root Dia.	=	0.113	in.
F_{yb}	=	100,000	psi
Fastener length	=	2.000	in.

Main Member

Material	=		SPF	
G	=	0.42		
θ	=	90	<= (Angle of loa	and to grain $0^{\circ} \le \theta \le 90^{\circ}$)
F_{e}	=	3,350	psi	
Thickness	=	1.500	in.	

Side Member

Material	=	ASTM A 653	<mark>3, Grade 33 Steel</mark>
G	=	N/A	
θ	=	90	$<=$ (Angle of load to grain $0^{\circ} < \theta < 90^{\circ}$)
F_{es}	=	61,850	psi
Γhickness	=	0.033	in.

Calculations

Lateral Bearing Factors

D	=	0.113	in.
$\ell_{\rm m}$	=	1.500	in.
K_{θ}	=	1.25	
K_D	=	2.20	
R_{e}	=	0.054	
R_{t}	=	45.45	
\mathbf{k}_1	=	1.0041	
k_2	=	0.4945	
k_2	=	21.77	

Yield Mode	R_d
$I_{\rm m}$, $I_{\rm s}$	2.20
II	2.20
III _m , III _s , IV	2.20

<u>Alternate Installation – Strap Anchor to Wood with Nail</u> (Continued)

Lateral Desi	gn Valu	ies, Z	_	
$Mode\ I_{m}$	=	258	lbf	
Mode I _s	=	105	lbf	
Mode II	=	105	lbf	
$ModeIII_{m}$	=	115	lbf	
Mode III _s	=	60	lbf	<===== Minimum Va
Mode IV	=	84	lbf	
C_{D}	=	1.6		
		ice Factor		
Fabrication/In-	Service	Dry/Dry		
C_M	=	1.0		
In service temp	erature	T:	≤100°F	
C_t	=	1.0		
C_g	=	1.0		
C_{Δ}	=	1.0		
Is fastener installed in end	grain?	No		
C_{eg}	=	1.00		
Is fastener part of a diapl	hragm?	No		
C_{di}	=	1.0		
Is fastener toe-	nailed?	No		
C_{tn}	=	1.00		
Z'	=	<u>96</u>	lbf	

Alternate Installation - Strap Anchor to Steel Stud

#10-16 TEKS Screws Connecting Strap to Steel Stud

#8 Screws Connecting Strap to Window Frame

0.125" thick Window Frame

18 gauge (0.043" thick) 33 KSI Steel Stud

20 gauge (0.033" thick) 33 KSI Steel Strap Anchor

1/4" Maximum Shim Space

Allowable Shear of #10-16 TEKS Screw

 $P_{ss}/\Omega = 573 \text{ lb (ESR-1976)}$

Bearing of #10-16 TEKS Screw on Steel Strap Anchor

 $V_a = 2.7 Dt F_{tu}/3.0$

 $V_a = 2.7(0.190")(0.033")(45,000 psi)/3.0$

 $V_a = 253 \text{ lb.}$

Bearing of #10-16 TEKS Screw on Steel Stud

 $V_a = 2.7 Dt F_{tu}/3.0$

 $V_a = 2.7(0.190")(0.043")(45,000 psi)/3.0$

 $V_a = 331 \text{ lb.}$

Tilting of #10-16 TEKS Screw in Steel Stud

 $V_a = 4.2(t_2^3D)^{1/2}F_{tu2}/n_s$

 $V_a = 4.2(0.0428^{\circ 3} \times 0.190^{\circ})^{1/2}(45,000 \text{ psi})/3.0$

 $V_a = 243 \text{ lb.}$

Bending of #10-16 TEKS Screw

L = 1/4" (Maximum Shim Space)

 $S = \pi d^3/32 = \pi (0.135)^3/32 = 0.000242 \text{ in}^3$

 $F_b = (1.3)(0.6F_v) = (1.3)(0.6)(92,000 \text{ psi}) = 71,760 \text{ psi} (1.3 \text{ weak axis factor})$

 $F_b = M/S = (VL/2)/S (L/2 \text{ for guided bending})$

 $V = 2SF_b/L = (2)(0.000242 \text{ in}^3)(71.760 \text{ psi})/0.25" = 139 \text{ lb}.$

<u>Alternate Installation – Strap Anchor to Steel Stud</u> (Continued)

Bearing of #8 Screw on Strap Anchor

 $V_a = 2.7 \text{DtF}_{tu}/3.0$ $V_a = 2.7(0.164")(0.033")(45,000 \text{ psi})/3.0$ $V_a = 219 \text{ lb}.$

Bearing of #8 Screw on Frame

 F_p = 10,000 psi D = 0.164" t = 0.125" $V_a = F_p Dt = (10,000 \text{ psi})(0.164")(0.125") = 205 \text{ lb}$

Capacity of Connection is 139 lb

Capacity for Two Screws is 278 lb

Alternate Installation - Strap Anchor to Concrete

3/16" Tapcon Anchor; 2-1/2" Minimum Edge Distance, 1-1/4" Minimum Embedment

#8 Screws Connecting Strap to Window Frame

0.125" thick Window Frame

20 gauge (0.033" thick) 33 KSI Steel Strap Anchor

1/4" Maximum Shim Space

Minimum f'_c = 3,000 psi Concrete

Allowable Shear of 3/16" Tapcon Anchor

 $P_{ss}/\Omega = 181 \text{ lb}$ (NOA-No. 16-1222.06)

Bearing of 3/16" Tapcon Anchor on Strap Anchor

 $V_a = 2.7 Dt F_{tu}/3.0$

 $V_a = 2.7(0.170")(0.033")(45,000 psi)/3.0$

 $V_a = 227 \text{ lb.}$

Bending of 3/16" Tapcon Anchor

L = 1/4" (Maximum Shim Space)

 $S = \pi d^3/32 = \pi (0.170'')^3/32 = 0.000482 in^3$

 $F_b = (1.3)(0.6F_v) = (1.3)(0.6)(137,000 \text{ psi}) = 106,860 \text{ psi} (1.3 \text{ weak axis factor})$

 $F_b = M/S = (VL/2)/S (L/2 \text{ for guided bending})$

 $V = 2SF_b/L = (2)(0.000482 \text{ in}^3)(106,860 \text{ psi})/0.25" = 412 \text{ lb}.$

Bearing of #8 Screw on Strap Anchor

 $V_a = 2.7 Dt F_{tu}/3.0$

 $V_a = 2.7(0.164")(0.033")(45,000 psi)/3.0$

 $V_a = 219 \text{ lb.}$

<u>Alternate Installation – Strap Anchor to Concrete</u> (Continued)

Bearing of #8 Screw on Frame

$$\begin{split} F_p &= 10,000 \text{ psi} \\ D &= 0.164\text{"} \\ t &= 0.125\text{"} \\ V_a &= F_p D t = (10,000 \text{ psi})(0.164\text{"})(0.125\text{"}) = 205 \text{ lb} \end{split}$$

Capacity of Connection is 181 lb

Alternate Installation - Strap Anchor to CMU

3/16" Tapcon Anchor; 2-1/2" Minimum Edge Distance, 1-1/4" Minimum Embedment

#8 Screws Connecting Strap to Window Frame

0.125" thick Window Frame

20 gauge (0.033" thick) 33 KSI Steel Strap Anchor

1/4" Maximum Shim Space

Minimum ASTM C90 Concrete Masonry Unit

Allowable Shear of 3/16" Tapcon Anchor

 $P_{ss}/\Omega = 135 \text{ lb}$ (NOA-No. 16-1222.06)

Bearing of 3/16" Tapcon Anchor on Strap Anchor

 $V_a = 2.7 Dt F_{tu}/3.0$

 $V_a = 2.7(0.170")(0.033")(45,000 psi)/3.0$

 $V_a = 227 \text{ lb.}$

Bending of 3/16" Tapcon Anchor

L = 1/4" (Maximum Shim Space)

 $S = \pi d^3/32 = \pi (0.170'')^3/32 = 0.000482 in^3$

 $F_b = (1.3)(0.6F_v) = (1.3)(0.6)(137,000 \text{ psi}) = 106,860 \text{ psi} (1.3 \text{ for weak axis bending})$

 $F_b = M/S = (VL/2)/S (L/2 \text{ for guided bending})$

 $V = 2SF_b/L = (2)(0.000482 \text{ in}^3)(106,860 \text{ psi})/0.25" = 412 \text{ lb}.$

Bearing of #8 Screw on Strap Anchor

 $V_a = 2.7 Dt F_{tu}/3.0$

 $V_a = 2.7(0.164")(0.033")(45,000 psi)/3.0$

 $V_a = 219 \text{ lb.}$

<u>Alternate Installation – Strap Anchor to CMU</u> (Continued)

Bearing of #8 Screw on Frame

 F_p = 10,000 psi D = 0.164" t = 0.125" V_a = F_p Dt = (10,000 psi)(0.164")(0.125") = 205 lb

Capacity of Connection is 135 lb

144x72 +35/-40 psf

Anchorage Requirements - Nail Fin

Window Overall Size: 144" x 72"

Window Overall Area: $(144")(72")/144 = 72 \text{ ft}^2$

Window Overall Wind Load: $(40 \text{ psf})(72 \text{ ft}^2) = 2,880 \text{ lb}$

Installed Anchor Spacing: 8" head; 8" sill; 8" each jamb

Installed Anchors: 17 head + 17 sill + 2(11) jambs = 56 installed anchors

Minimum Anchor Capacity: 56 lb/anchor

Total Anchor Capacity: (56 anchors)(56 lb/anchor) = 3,136 lb > 2,880 lb

Anchorage Requirements – Through Frame and Strap Anchor

Window Overall Size: 144" x 72"

Window Overall Area: $(144")(72")/144 = 72 \text{ ft}^2$

Window Overall Wind Load: $(40 \text{ psf})(72 \text{ ft}^2) = 2,880 \text{ lb}$

Installed Anchor Spacing: 18" head; 21" each jamb; 2 each side of mull

Installed Anchors: 12 head + 2(5) jambs = 22 installed anchors

Minimum Anchor Capacity: 113 lb/anchor

Total Anchor Capacity: (22 anchors)(113 lb/anchor) = 2,486 lb \approx 2,880 lb **OK**

(Anchorage considered OK as it was validated by testing)

Appendix A

Revision Log

<u>Identification</u> <u>Date</u> <u>Page & Revision</u>

Original Issue 08/27/20 Not Applicable